Similarities in the Metabolic Reprogramming of Immune System and Endothelium

نویسندگان

  • Chu-Yik Tang
  • Claudio Mauro
چکیده

Cellular metabolism has been known for its role in bioenergetics. In recent years, much light has been shed on the reprogrammable cellular metabolism underlying many vital cellular processes, such as cell activation, proliferation, and differentiation. Metabolic reprogramming in immune and endothelial cells (ECs) is being studied extensively. These cell compartments are implicated in inflammation and pathogenesis of many diseases but their similarities in metabolic reprogramming have not been analyzed in detail. One of the most notable metabolic reprogramming is the Warburg-like effect, famously described as one of the hallmarks of cancer cells. Immune cells and ECs can display this phenotype that is characterized by a metabolic switch favoring glycolysis over oxidative phosphorylation (OXPHOS) in aerobic conditions. Though energy-inefficient, aerobic glycolysis confers many benefits to the respiring cells ranging from higher rate of adenosine triphosphate production to maintaining redox homeostasis. Chemical and biological regulators either promote or perturb this effect. In this review, nitric oxide, hypoxia-inducible factor, and adenosine monophosphate-activated protein kinase have been discussed for their common involvement in metabolic reprogramming of both systems. From in vitro and animal studies, various discrepancies exist regarding the effects of those regulators on metabolic switch. However, it is generally accepted that glycolysis favors inflammatory reactions while OXPHOS favors anti-inflammatory processes. The reasons for such observation are currently subject of intense studies and not completely understood. Finally, metabolic reprogramming in immune cells and ECs does not limit to the physiological state in health but can also be observed in pathological states, such as atherosclerosis and cancer. These new insights provide us with a better understanding of the similarities in metabolic reprogramming across a number of cell types, which could pave the way for future research and possible metabolic-based therapeutics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of microRNAs and phytohormones in plant immune system

The plant-pathogen interaction is a multifactor process that may lead to resistance or susceptible responses of plant to pathogens. During the arms race between plant and pathogens, various biochemical, molecular and physiological events are triggered in plant cells such as ROS signaling, hormone activation and gene expression reprogramming. In plants, microRNAs (miRNAs) are key post-transcript...

متن کامل

P123: Stimulating In Vivo Remyelination (IVR): A New Approach for Multiple Sclerosis Treatment

Multiple sclerosis (MS) is one of the most common neuroinflammatory disorders that causes disability in the young adults. In this disease immune-driven demyelination and following that inefficient remyelination occurs. Therapies for this disease are limited, especially those to enhance myelin repair. Cellular reprogramming using defined genetic factors is a way to produce remyelinating Oligoden...

متن کامل

A Review of the Relationship between Obesity and Some Sexual Dysfunction in Men and Women

Introduction: Obesity, one of the major growing problems of the present century is reaching pandemic proportions. Today, a large percentage of men and women of all ages suffer from obesity. The relationship between obesity and its effect on sexual dysfunction through different mechanisms has been documented. Obesity, a risk factor for cardiovascular and metabolic diseases with impaired immune s...

متن کامل

P 65: Soluble CD18 as an Inflammation Reducing Agent in Parkinson\'s Disease

Parkinson's disease (PD) is a very common neurodegenerative disease among the elderly population. Current treatments for Parkinson’s disease are based on symptom therapy but not the underlying cause of the disease. This disorder is caused neuronal death which triggers the activation of resident glial cells. This situation leads to neuroinflammation in the central nervous system. Activated...

متن کامل

Metabolic Cooperation and Competition in the Tumor Microenvironment: Implications for Therapy

The tumor microenvironment (TME) is an ensemble of non-tumor cells comprising fibroblasts, cells of the immune system, and endothelial cells, besides various soluble secretory factors from all cellular components (including tumor cells). The TME forms a pro-tumorigenic cocoon around the tumor cells where reprogramming of the metabolism occurs in tumor and non-tumor cells that underlies the natu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017